WFTECFLUID

Instrumentation for fluids

Variable Area Flowmeter Series 2100/2150 2300/2340

Measurement of Low GAS & Liquid Flows

The Measurement

Measurement with a float in a tapered borosilicate glass tube.

- Series 2100 with a 100 mm flow tube
- Series 2150 with a 150 mm flow tube
- Series 2300 and 2340 with a 300 mm flow tube
- Regulating valve with a tapered plug and fine thread for precise flow adjustment
- Compact construction with reduced dimensions to facilitate easy installation and mounting on control panels
- Scales calibrated in flow units of I/h, %, I/min or cc/min
- High & Low flow alarms (Optical, inductive or hall sensor)
- Constant flow regulators RCA or RCD
- A large number of applications in a wide range of manufacturing and laboratory processes, such as:
 - Control panels
 - Pilot plants
 - Measurement & control on machinery
 - Water purification (Osmosis)
 - Control in research laboratories
 - Control of gas burners
 - Chemical / pharmaceutical / cosmetic industry
 - Flow control for industrial refrigeration
 - Heat treatment
 - Level control with the RCD regulator

Benefits

- Easy installation
- Short mounting length
- No straight pipe required before or after the flow meter
- Vertical mounting for rising fluid flow
- Horizontal inlet & outlet connections
- Low pressure loss
- Temperatures up to 100°C
- Compact construction

Operation

A fluid flowing vertically through a tapered tube will provide a lifting force on a weighted float, holding it in a fixed position for a fixed flow.

The float's resting position is a function of; the free area of flow AI (annulus between the float and the measuring tube), the weight of the float Pf and the force E of the fluid flow. Each position of float height corresponds to a different flow, which is shown by the equivalent scale engraved on the metering tube.

Model 2150 with inductive sensor

Technical Data

- Connections
- 2100 / 2150 / 2300 R1/4", (Female) BSP or NPT
- 2300 R1/4", (Female) BSP or NPT
- R1/2", R3/4" (male only) BSP or NPT - 2340
- (BSP parallel according to standard ISO 228-1) (NPT according to ANSI B2 1968)
- Flow Tube • Length: Body
- 2100 100 mm
- 165 mm - 2150 150 mm 215 mm
- 2300 300 mm 365 mm
- 2340 390 mm
 - 300 mm
- Accuracy, according to VDE / VDI 3513 standards:
- 2100 ± 3.5%
- 2150 ± 3%
- 2300 / 2340 ± 1.6 %
- Scales calibrated directly in
 - I/h for water
 - I/h up to 700 NI/h for air
 - Nm³/h from 1-17Nm³/h for air
 - I/s, cc/min, %, or others on request
- Materials: AISI-316L (1.4404) Ends: AISI-316L (1.4404) Body: AISI-316L (1.4404) Valve: PTFE
 - Valve Seat: O-Rings/gaskets NBR
- (Viton or EPDM on request) • Temperature:
- 0...+100°C Fluid: Ambient: 0...+80°C
- Alarm Options: - 20-AMD (1...2): Inductive sensor
 - (relay amplifier on request)
 - 20-AMO (1...2):Optical detector
 - (relay infrared in Aluminium case)
 - 20-AMH (1...2): HALL effect sensor
 - (relay in Aluminium case)
- Constant Flow Regulators:
 - Series RCA: For gases when the inlet pressure varies and the outlet pressure is constant. For all liquid applications.
 - Series RCD: For gases when the outlet pressure fluctuates and the inlet pressure is constant.
- Regulator Materials: Body: AISI-316 Membrane: NBR (Viton or PTFE on request) AISI-316 Spring:
- The minimum allowable pressure difference between the inlet and outlet of the regulator is 200 mbar.

Float AC

Float ECG

reading point

Flow Meters Series 2000

Constant Flow Regulator

2100 / 2150 / 2300 / 2340

N⁰.	Item	Material
1	Protection Shield	Polycarbonate*
2	Body	AISI-316
3	End piece	AISI-316
5	O-Ring	NBR / Viton / EPDM
6	Piston	AISI-316
7	End Gasket	NBR / Viton / EPDM
8	Metering tube	Borosilicate Glass
9	Float	AISI-316L / Glass /
		Ceramic / Plastic / Aluminium
10	Spring	AISI-316
11	Valve body	AISI-316L
12	Valve stem	AISI-316L
13	Guide nut	AISI-316L
14	Valve knob	Plastic
15	Valve guide	PTFE
16	Valve O-ring	NBR / Viton / EPDM
17	Valve seat	PTFE
18	Optional	AISI-316
19	Optional	AISI-316

RCD / RCA

N⁰.	Item	Materials
1	Membrane body	AISI-316L
2	Membrane	NBR / Viton / PTFE
4	Valve Guide	AISI-316L
5	Regulating Valve	AISI-316L
6	Seal	PTFE
7	Spring Support	AISI-316L
8	Valve Spring	AISI-316
9	Membrane disc	AISI-316
10	Membrane spring	AISI-316
11	Screw	AISI-316
12	Connection union	AISI-316

* 2340 Series, does not fit Protection Shield

	Tube Length (mm)		Measurement Ranges for Float Series AC / ECG											
Tube N⁰.			WATE I	R 20ºC ∕h			AIR 20°C 1.013 bar abs Nl/h					PRESSURE LOSS mm Water		
		AIS	SI-316	GLA	SS	AIS	SI-316	GI	ASS	PLA	STIC	AISI-316	GLASS	PLASTIC
Series 2100)													
C110/0001 C110/0002.5 C111/0005 C111/0010	100	0.1 0.2 0.5 1	1 2.5 5 10	0.05 0.1 0.2 0.4	0.5 1 2 4	3 8 15 30	30 80 160 350	1 4 7 15	15 40 70 180	0.5 1.5 3 8	5 16 30 110	20	10	5
C111/0016 C112/0025 C113/0040 C114/0060		1.6 2.5 4 6	16 25 40 60	0.6 1 1.6 2	6 10 16 20	40 80 120 200	450 800 1200 2000	20 40 70 100	240 400 700 1000	10 20 40 70	140 250 400 700	35	20	10
C115/0100		10	100	4	40	300	3500	150	1600	100	1100	50	25	15
Series 2150)													
C210/0001 C210/0002.5 C211/0005 C211/0010 C211/0016	150	0.1 0.2 0.5 1	1 2.5 5 10	0.05 0.1 0.2 0.4	0.5 1 2 4	3 8 15 30	30 80 180 300	2 5 10 15	20 50 100 180	0.5 1 3 10	5 16 30 100	20	10	5
C212/0025 C213/0040 C214/0060 C215/0100		2.5 4 6 10	25 40 60 100	0.0 1 1.6 2 4	10 16 20 40	80 100 150 300	800 1000 1500 3000	40 70 100 150	400 700 1000 1500	20 40 70 100	250 400 700 1100	35 50	20 25	10 15

	Tube Length (mm)					Measure	Measurement Ranges for Float Series AC					
Tube №.			WATE	ER 20ºC I∕h		A	IR 20ºC 1.0′ Nl/h	13 bar abs		PR	ESSURE mm Wat	LOSS ter
		AIS	SI-316	GLA	SS	ALU	MINIUM	AISI	-316	AISI-316	GLASS	ALUMINIUM
Series 2300)											
C311/0025 C311/0040 C311/0060	300	2.5 4 6	25 40 60	1 1.6 2	10 16 20	40 70 100	400 700 1000	120 150 150	800 1400 2000	55	18	22
C312/0100 C312/0160 C312/0250		10 16 25	100 160 250	L	20	170 250 400	1700 2500 4000	300 400 700	3000 4500 7000	90	30	35
Series 2340 C313/0400 C313/0630 C313/1000) 300	40 60 100	400 630 1000			700 1000 1700	7000 10000 17000	1000 1800 3000	10000 18000 30000	125	40	50

Series 2100, 2150, 2300

Dimensions & Weight

Series	DR	L	Connection R"	Wt (kg) Meter + RCA
2100	136	158	1/4"F BSP/NPT	0.700 + 2.5
2150	186	186	1/4"F BSP/NPT	0.850 + 2.5
2300	336	358	1/4"F BSP/NPT	0.850 + 2.5
2340	346	390	1/2"F or 3/4"m BSP/NPT	1.800 + 3

Series 2340

Dimensions

Flow Meter + Regulator

		Flo	w							
Series	AIR Min	NI/h Max	WAT Min	ER I/h Max	A	В	С	н	L	Connection D
2100 2150 2300	10	-4000	1	-250	150 150 150	170 170 170	136 186 336	172 222 372	266 266 266	1/4"BSP/NPT 1/4"BSP/NPT 1/4"BSP/NPT 1/2"BSP/NPT
2340	700	-7000	60	-400	180	200	346	397	320	1/2"BSP/NPT

Dimensions

Flow Regulator

Series	R"	А	В	С	D	Е	F	
RCA RCD	1/4" BSP/NPT	35	11	52	13	88	63	
RA40 RD40	1/2" BSP/NPT	40	16	65	18	100	81	

Differential Pressure Controller RCA/RCD

The 2000 Series flow meters are built to incorporate the regulators RCA/RCD that regulate and maintain a constant flow.

The RCA series, for gases and liquids, is used in installations where the pressure at the inlet is variable and the pressure at the outlet is constant.

The RCD series, for gases and liquids, is used in installations where the pressure at the inlet is constant and the pressure at the outlet is variable.

Operation

The RCA regulator is for variable pressure at the inlet and constant pressure at the outlet. The measured fluid, with variable pressure at the inlet, enters through connection (1), passes the regulating valve to the chamber (3) where a new lower pressure P1 is created and acts on the membrane (4).

Flow Curve

The flow curve shows the relationships between the inlet pressure P_0 and the back pressure P_2 in the RCA regulator. The different flows are adjusted by the regulating valve (7). The back pressure, P_2 , in this case is atmospheric pressure. The flow is maintained practically constant when the pressure at the inlet is 200 mbar higher than the back pressure P_2 .

P₀=Pressure at the inlet to the RCA Regulator (Low flow)

The dotted line shows the flow variation without the action of the pressure regulator. With variations of 100% at the inlet P_0 , the variations of the flow are less than 1%. With high flow rates, the precision obtained is lower.

The regulating valve (2) joined to the membrane (4) is initially open by the action of the regulating spring (5). After the fluid has passed through the chamber (3) of the regulator, it passes through the measuring valve (7), and then through the measuring tube (8) and exits through the connection (9), against the pressure of the constant outlet P2, which also acts on the membrane (4).

The springs (5+6) are built so that the valve (2) opens when the pressure at the inlet P0 decreases and the valve closes when P0 increases. This keeps the pre-set flow through the regulating valve (7) of the flow meter by keeping a constant pressure drop across the valve (P2-P1).

The differential pressure between P0 and P2 should always be greater than 200 mbar, in order to ensure the springs (5+6) operate correctly.

The RCD flow regulators act in a similar way, modifying the position of the regulating valve (2) and the measuring valve (7), according to the drawing below.

P₀=Inlet pressure to the RCA Regulator (Large flow)

P₂=Outlet pressure from the RCD Regulator (Low flow)

The above curves show the variation in flow and working pressure.

Hydrostatic Level Meter

The model 2100 is suitable for many hydrostatic level measurement applications, including open tanks and closed, pressurised tanks.

The probe is fed a constant flow of air (or gas) by the 2100/RCD system. The pressure of the air to the tube will always be equal to the hydrostatic head of the fluid. The pressure gauge therefore provides a direct reading of the level.

In the case of closed, pressurised tanks, two constant flow systems are required to provide a pressure difference that is equivalent to the level. This is necessary to compensate for any variations in the tank pressure.

Open Tanks (fig.1)

The complete measurement system comprises of:

- A probe (tube) open at the bottom of the tank.

- A pressure gauge (or manometer) scaled in mm of water.

- A model 2100 flowmeter with RCD constant flow regulator.

Closed Pressurised Tanks (fig.2)

- The complete measurement system comprises of:
- Two probes, one open at the top of the tank and the other open at the bottom.
- A differential pressure gauge (or manometer) scaled in mm of water.
- Two model 2100 flowmeters with RCD constant flow regulator.

Measurement of Density (fig.3)

The bubble tube systems described above can also be adapted to other measurements, such as density.

The differential pressure between two tubes with their openings a fixed distance apart will provide a measurement of the fluid density.

A 200mm difference in probe height is most commonly used. This will make a change in density of 0.1 g alter the differential pressure by 20mm Water.

Adjustable magnetic switch 20 AMH

- From 2.5 25 l/h H₂O, Float AC
- Hall efect detector (for low magnetics fields)
- Actuated by the magnet in the float
- Switch point adjustable over the full scale
- Shielded cable between the sensor and the electronics

Electronics

 Power supply: 24 V ac, 110 V ac, 230 V ac, 240 V ac 50-60 Hz

240 v ac 50-60 24 V dc

Power consumption: less than 1 VA

Output Relay (switch over contact)

- Maximun voltage: 250 V
- Maximun current: 3 A
- Maximun power: 250 VA

Series 20 AMH/40 protection (DIN rail 46121) Series 20 AMH/65 protection (Plastic housing)

Adjustable Optical Alarm, Series 20-AMO

Infra-red optical alarm, actuated by the float when it crosses the path of the beam. The sensor is mounted in a PVC support and has a switching relay in a separate aluminium enclosure.

- 20-AMO 1....2: 1...2 Adjustable Alarm contacts
- Power Supply: 220 V ac / 50Hz or 24V dc
- Load: 1A @ 220 V ac / 50Hz
- Temperature: -10°C to +80°C
- Hysteresis: ± 5% of full scale

Series 20-AMO

Series	А	В	С	Max Nl/h Air	Flow I/h Water
20-AMO	48	52	15	700	60

Adjustable Inductive sensor, Series 20-AMD

Annular inductive sensor according to NAMUR and DIN 19234, mounted in a plastic box, actuated by the passing of the float.

- 20 AMD 1... 2: 1 or 2 adjustable sensor
- Power Supply: 8 V dc
- Temperature: -25°C to +70°C

Control Relay / NAMUR (DIN 19234)

Model for 1 or 2 inductive alarms

- Power Supply: 24 ... 230 V ac 50-60Hz 24 ... 250 V dc
- Control circuit is intrinsically safe to EEx ia IIC (Zone 0)
- Load: 2 ... 5 A ac / 40 V dc
- Temperature: -25°C to +70°C.

Series 20-AMD / 24-AMD

Series	А	øD	Е	Max I NI/h Air	Flow I/h Water
20-AMD	37	15	25	300	10
24-AMD	87	21	45	2000	60

We are at your service, please consult us.

TECFLUID develops and manufactures instruments for gases and liquids, using the most advanced technology. Request Information by telephone n^o (34) 93 372 45 11

C/. Narcis Monturiol, 33 - E-08960 SANT JUST DESVERN (BARCELONA) International: Telephone. (34) 93 372 45 11 - Fax (34) 93 473 44 49 www.tecfluid.com - e-mail: tecfluid@tecfluid.com

Data in this pamphlet is subject to modification without notification, if the technical innovations in the product or manufacturing processes so require.

